

Superpowered game development.

Language Syntax
version 3.0.5481 beta

Live/current version at
skookumscript.com/docs/v3.0/lang/syntax/

November 15, 2017

 Better coding through mad science.

Copyright © 2001-2017 Agog Labs Inc.
All Rights Reserved

http://skookumscript.com/docs/v3.0/lang/syntax/

SkookumScript – Proposed Syntax (ver. 3.0.5481 beta)

© 2001-2017 Agog Labs Inc. - Page 2 -

Combined syntactical and lexical rules for SkookumScript in modified Extended Backus-Naur Form (EBNF).

Production rules in italics. Terminals coloured and in bold and literal strings ‘quoted’. Optional groups: [].
Repeating groups of zero or more: { }. Repeating groups of n or more: { }n+. Mandatory groups: (). Alternatives
(exclusive or): |. Disjunction (inclusive or): V.

Expressions:
expression = literal | variable-primitive | identifier | invocation | type-primitive | flow-control

Literals:
literal = boolean-literal | integer-literal | real-literal | string-literal | symbol-literal

| char-literal | list-literal | closure
boolean-literal = ‘true’ | ‘false’
integer-literal1 = [‘-’] digits-lead [‘r’ big-digit {[number-separator] big-digit}]
real-literal2 = [‘-’] digits-lead V (‘.’ digits-tail) [real-exponent]
real-exponent = ‘E’ | ‘e’ [‘-’] digits-lead
digits-lead3 = ‘0’ | (non-zero-digit {[‘_’] digit})
digits-tail = digit {[‘_’] digit})
string-literal = simple-string {ws ‘+’ ws simple-string}
simple-string = ‘"’ {character} ‘"’
symbol-literal = ‘'’ {character}0-255 ‘'’
char-literal = ‘`’ character
list-literal4 = [(list-class constructor-name invocation-args) | class-name]

‘{’ ws [expression {ws [‘,’ ws] expression} ws] ‘}’
closure5 = (‘^’ [‘_’ ws] [expression ws]) V (parameters ws) code-block

Variable Primitives:
variable-primitive = create-temporary | bind
create-temporary = define-temporary [ws binding]
define-temporary = ‘!’ ws variable-name
bind6 = variable-identifier ws binding
binding7 = ‘:’ ws expression

1 ‘r’ indicates digits-lead is (r)adix/base from 1 to 36 – default 10 (decimal) if omitted. Ex: 2r binary & 16r hex. Valid big-digit(s)

vary by the radix used. See math-operator footnote on how to differentiate subtract from negative integer-literal.
2 Can use just digits-lead if Real type can be inferred from context otherwise the digits-tail fractional or real-exponent part is

needed. See math-operator footnote on how to differentiate subtract from negative real-literal.
3 ‘_’ visually separates parts of the number and ignored by the compiler.
4 Item type determined via optional list-class constructor or specified class. If neither supplied, then item type inferred using

initial items, if no items then Object used.
5 Optional ‘^’, parameters or both must be provided (unless used in closure-tail-args where both optional). Optional expression

(may not be code-block, closure or routine-identifier) captured and used as receiver/this for code-block – if omitted this
inferred. Optional ‘_’ indicates it is durational (like coroutine) – if not present durational/immediate inferred via code-block.
Parameter types, return type, scope, whether surrounding this or temporary/parameter variables are used and captured may
all be inferred if omitted.

6 Compiler gives warning if bind used in code-block of a closure since it will be binding to captured variable not original variable in
surrounding context. May not be used as an argument.

7 [Stylisticly prefer no ws prior to ‘:’ – though not enforcing it via compiler.]

SkookumScript – Proposed Syntax (ver. 3.0.5481 beta)

© 2001-2017 Agog Labs Inc. - Page 3 -

Identifiers:
identifier1 = variable-identifier | reserved-identifier | class-name | object-id
variable-identifier2 = variable-name | ([expression ws ‘.’ ws] data-name)
variable-name = name-predicate
data-name3 = ‘@’ | ‘@@’ variable-name
reserved-identifier = ‘nil’ | ‘this’ | ‘this_class’ | ‘this_code’ | ‘this_mind’
object-id4 = [class-name] ‘@’ [‘?’ | ‘#’] symbol-literal
invoke-name = method-name | coroutine-name
method-name5 = name-predicate | constructor-name | destructor-name | class-name
name-predicate6 = instance-name [‘?’]
constructor-name = ‘!’ [instance-name]
destructor-name7 = ‘!!’
coroutine-name = ‘_’ instance-name
instance-name = lowercase {alphanumeric}
class-name = uppercase {alphanumeric}

Invocations:
invocation = invoke-call | invoke-cascade | apply-operator | invoke-operator | index-operator

| instantiation
invoke-call8 = ([expression ws ‘.’ ws] invoke-selector) | operator-call
invoke-cascade = expression ws ‘.’ ws ‘[’ {ws invoke-selector | operator-selector}2+ ws ‘]’
apply-operator9 = expression ws ‘%’ | ‘%>’ invoke-selector
invoke-operator10 = expression bracketed-args
index-operator11 = expression ‘{’ ws expression ws ‘}’ [ws binding]
instantiation12 = [class-instance] | expression ‘!’ [instance-name] invocation-args
invoke-selector = [scope] invoke-name invocation-args
scope = class-name ‘@’
operator-call13 = (prefix-operator ws expression) | (expression ws operator-selector)
operator-selector = postfix-operator | (binary-operator ws expression)
prefix-operator14 = ‘not’ | ‘-’
binary-operator = math-operator | compare-op | logical-operator | ‘:=’
math-operator15 = ‘+’ | ‘+=’ | ‘-’ | ‘-=’ | ‘*’ | ‘*=’ | ‘/’ | ‘/=’

1 Scoping not necessary – instance names may not be overridden and classes and implicit identifiers effectively have global scope.
2 Optional expression can be used to access data member from an object – if omitted, this is inferred.
3 ‘@’ indicates instance data member and ‘@@’ indicates class instance data member.
4 If class-name absent, Actor inferred or desired type if known. If optional ‘?’ present and object not found at runtime then

result is nil else assertion error occurs. Optional ‘#’ indicates no lookup – just return name identifier validated by class type.
5 A method using class-name allows explicit conversion similar to class-conversion except that the method is always called.
6 Optional ‘?’ used as convention to indicate predicate variable or method of return type Boolean (true or false).
7 Destructor calls are only valid in the scope of another destructor’s code block.
8 If an invoke-call's optional expression (the receiver) is omitted, ‘this.’ is implicitly inferred.
9 If List, each item (or none if empty) sent call – coroutines called using % – sync, %> – race respectively and returns itself (the

list). If non-list it executes like a normal invoke call – i.e. ‘%’ is synonymous to ‘.’ except that if nil the call is ignored, then
the normal result or nil respectively is returned.

10 Akin to expr.invoke(…) or expr._invoke(…) depending if expression immediate or durational – *and* if enough context is
available the arguments are compile-time type-checked plus adding any default arguments.

11 Gets item (or sets item if binding present) at specified index object. Syntactic sugar for at() or at_set().
12 If class-instance can be inferred then it may be omitted. expression used rather than class-instance provides lots of syntactic

sugar: expr!ctor() is alias for ExprClass!ctor(expr) – ex: num!copy equals Integer!copy(num); brackets are
optional for invocation-args if it can have just the first argument; a constructor-name of ! is an alias for !copy – ex: num!
equals Integer!copy(num); and if expr!ident does not match a constructor it will try ExprClass!copy(expr).ident –
ex: str!uppercase equals String!copy(str).uppercase.

13 Every operator has a named equivalent. For example := and assign(). Operators do *not* have special order of precedence –
any order other than left to right must be indicated by using code block brackets ([and]).

14 See math-operator footnote about subtract on how to differentiate from a negation ‘-’ prefix operator.
15 In order to be recognized as single subtract ‘-’ expression and not an expression followed by a second expression that starts

with a minus sign, the minus symbol ‘-’ must either have whitespace following it or no whitespace on either side.

SkookumScript – Proposed Syntax (ver. 3.0.5481 beta)

© 2001-2017 Agog Labs Inc. - Page 4 -

compare-op = ‘=’ | ‘~=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’
logical-operator1 = ‘and’ | ‘or’ | ‘xor’ | ‘nand’ | ‘nor’ | ‘nxor’
postfix-operator = ‘++’ | ‘--’
invocation-args2 = [bracketed-args] | closure-tail-args
bracketed-args = ‘(’ ws [send-args ws] [‘;’ ws return-args ws] ‘)’
closure-tail-args3 = ws send-args ws closure [ws ‘;’ ws return-args]
send-args = [argument] {ws [‘,’ ws] [argument]}
return-args = [return-arg] {ws [‘,’ ws] [return-arg]}
argument = [named-spec ws] expression
return-arg4 = [named-spec ws] variable-identifier | define-temporary
named-spec5 = variable-name ws ‘:’

Type Primitives:
type-primitive = class-cast | class-conversion
class-cast6 = expression ws ‘<>’ [class-desc]
class-conversion7 = expression ws ‘>>’ [class-name]

Flow Control:
flow-control = code-block | conditional | case | when | unless | | loop | loop-exit | concurrent

| class-cast | class-conversion
code-block = ‘[’ ws [expression {wsr expression} ws] ‘]’
conditional = ‘if’ {ws expression ws code-block}1+ [ws else-block]
case = ‘case’ ws expression {ws expression ws code-block}1+ [ws else-block]
else-block = ‘else’ ws code-block
when = expression ws ‘when’ ws expression
unless = expression ws ‘unless’ ws expression
loop8 = ‘loop’ [ws instance-name] ws code-block
loop-exit9 = ‘exit’ [ws instance-name]
concurrent = sync | race | branch | divert
sync10 = ‘sync’ ws code-block
race11 = ‘race’ ws code-block
branch12 = ‘branch’ ws expression
change13 = ‘change’ ws expression ws expression

1 Like other identifiers – whitespace is required when next to other identifier characters.
2 bracketed-args may be omitted if the invocation can have zero arguments
3 Routines with last send parameter as mandatory closure may omit brackets ‘()’ and closure arguments may be simple code-

block (omitting ‘^’ and parameters and inferring from parameter). Default arguments indicated via comma ‘,’ separators.
4 If a temporary is defined in the return-arg, it has scope for the entire surrounding code block.
5 Used at end of argument list and only followed by other named arguments. Use compatible List object for group argument.

Named arguments evaluated in parameter index order regardless of call order since defaults may reference earlier parameters.
6 Compiler *hint* that expression evaluates to specified class – otherwise error. class-desc optional if desired type can be inferred.

If expression is variable-identifier then parser updates type context. [Debug: runtime ensures class specified is received.]
7 Explicit conversion to specified class. class-name optional if desired type inferable. Ex: 42>>String calls convert method
Integer@String() i.e. 42.String() - whereas “hello”>>String generates no extra code and is equivalent to “hello”.

8 The optional instance-name names the loop for specific reference by a loop-exit which is useful for nested loops.
9 A loop-exit is valid only in the code block scope of the loop that it references.
10 2+ durational expressions run concurrently and next expression executed when *all* expressions returned (result nil, return args

bound in order of expression completion).
11 2+ durational expressions run concurrently and next expression executed when *fastest* expression returns (result nil, return

args of fastest expression bound) and other expressions are *aborted*.
12 Durational expression run concurrently with surrounding context and the next expression executed immediately (result
InvokedCoroutine). expression is essentially a closure with captured temporary variables to ensure temporal scope safety.
Any return arguments will be bound to the captured variables.

13 Rather than inheriting the caller’s updater Mind object, durational expressions in the second expression are updated by the
mind object specified by the first expression.

SkookumScript – Proposed Syntax (ver. 3.0.5481 beta)

© 2001-2017 Agog Labs Inc. - Page 5 -

File Names and Bodies:
method-filename1 = method-name ‘()’ [‘C’] ‘.sk’
method-file2 = ws {annotation wsr} parameters [ws code-block] ws

coroutine-filename = coroutine-name ‘()’ ‘.sk’
coroutine-file3 = ws {annotation wsr} parameter-list [ws code-block] ws

data-filename4 = ‘!Data’ [‘C’] ‘.sk’
data-file = ws [data-definition {wsr data-definition} ws]
data-definition5 = {annotation wsr} [class-desc wsr] ‘!’ data-name

annotation6 = ‘&’ instance-name

object-id-filename7 = class-name [‘-’ {printable}] ‘.sk’ ‘-’ | ‘~’ ‘ids’
object-id-file8 = {ws symbol-literal | raw-object-id} ws
raw-object-id9 = {printable}1-255 end-of-line

Parameters:
parameters10 = parameter-list [ws class-desc]
parameter-list = ‘(’ ws [send-params ws] [‘;’ ws return-params ws] ‘)’
send-params = parameter {ws [‘,’ ws] parameter}
return-params = param-specifier {ws [‘,’ ws] param-specifier }
parameter = unary-param | group-param
unary-param11 = param-specifier [ws binding]
param-specifier12 = [class-desc wsr] variable-name
group-param = group-specifier
group-specifier13 = ‘{’ ws [class-desc {wsr class-desc} ws] ‘}’ ws instance-name

Class Descriptors:
class-desc = class-unary | class-union
class-unary = class-instance | meta-class
class-instance = class-name | list-class | invoke-class
meta-class = ‘<’ class-name ‘>’
class-union14 = ‘<’ class-unary {‘|’ class-unary}1+ ‘>’
invoke-class15 = [‘_’ | ‘+’] parameters
list-class16 = List ‘{’ ws [class-desc ws] ‘}’

1 If optional ‘?’ is used in query/predicate method name, use ‘-Q’ as a substitute since question mark not valid in filename.
2 Only immediate calls are permissible in the code block. If code-block is absent, it is defined in C++.
3 If code-block is absent, it is defined in C++.
4 A file name appended with ‘C’ indicates that the file describes class members rather than instance members.
5 class-desc is compiler hint for expected type of member variable. If class omitted, Object inferred or Boolean if data-name ends

with ‘?’. If data-name ends with ‘?’ and class-desc is specified it must be Boolean.
6 The context / file where an annotation is placed limits which values are valid.
7 Starts with the object id class name then optional source/origin tag (assuming a valid file title) – for example: Trigger-

WorldEditor, Trigger-JoeDeveloper, Trigger-Extra, Trigger-Working, etc. A dash ‘-’ in the file extension indicates an id file that
is a compiler dependency and a tilde ‘~’ in the file extension indicates that is not a compiler dependency

8 Note: if symbol-literal used for id then leading whitespace, escape characters and empty symbol ('') can be used.
9 Must have at least 1 character and may not have leading whitespace (ws), single quote (‘'’) nor end-of-line character.
10 Optional class-desc is return class – if type not specified Object is inferred (or Boolean type for predicates or Auto_ type for

closures) for nested parameters / code blocks and InvokedCoroutine is inferred for coroutine parameters.
11 The optional binding indicates the parameter has a default argument (i.e. supplied expression) when argument is omitted.
12 If optional class-desc is omitted Object is inferred or Auto_ for closures or Boolean if variable-name ends with ‘?’. If variable-

name ends with ‘?’ and class-desc is specified it must be Boolean.
13 Object inferred if no classes specified. Class of resulting list bound to instance-name is class union of all classes specified.
14 Indicates that the class is any one of the classes specified and which in particular is not known at compile time.
15 ‘_’ indicates durational (like coroutine), ‘+’ indicates durational/immediate and lack of either indicates immediate (like

method). Class ‘Closure’ matches any closure interface. Identifiers and defaults used for parameterless closure arguments.
16 List is any List derived class. If class-desc in item class descriptor is omitted, Object is inferred when used as a type or the

item type is deduced when used with a list-literal. A list-class of any item type can be passed to a simple untyped List class.

SkookumScript – Proposed Syntax (ver. 3.0.5481 beta)

© 2001-2017 Agog Labs Inc. - Page 6 -

Whitespace:
wsr1 = {whitespace}1+
ws = {whitespace}
whitespace = whitespace-char | comment
whitespace-char = ‘ ’ | formfeed | newline | carriage-return | horiz-tab | vert-tab
end-of-line = newline | carriage-return | end-of-file
comment = single-comment | multi-comment
single-comment = ‘//’ {printable} end-of-line
multi-comment = ‘/*’ {printable} [multi-comment {printable}] ‘*/’

Characters and Digits:
character = escape-sequence | printable
escape-sequence2 = ‘\’ integer-literal | printable
alphanumeric = alphabetic | digit | ‘_’
alphabetic = uppercase | lowercase
lowercase = ‘a’ | … | ‘z’
uppercase = ‘A’ | … | ‘Z’
digits = ‘0’ | (non-zero-digit {digit})
digit = ‘0’ | non-zero-digit
non-zero-digit = ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
big-digit = digit | alphabetic

1 wsr is an abbreviation for (w)hite (s)pace (r)equired.
2 Special escape characters: ‘n’ – newline, ‘t’ – tab, ‘v’ – vertical tab, ‘b’ – backspace, ‘r’ – carriage return, ‘f’ – formfeed, and

‘a’ – alert. All other characters resolve to the same character including ‘\’, ‘”’, and ‘’’.

